Pure sodium can react with the moisture in the air. (If I recall correctly).
Aluminium is used in drink cans and is very inert. Aluminium shavings can burn though and they’re difficult to extinguish.
Pure sodium can react with the moisture in the air. (If I recall correctly).
Aluminium is used in drink cans and is very inert. Aluminium shavings can burn though and they’re difficult to extinguish.
BYD. Seagull or the seal. Can’t remember which one.
Might need to wait for approval to do that.
Sodium batteries look great. They also can use the same manufacturing equipment as lithium batteries. Reducing the capital costs for the product.
They’re more of a hybrid technology. They have some great applications.
Like temporary storage when using regen from a car. They can buffer the energy and help with a rapid acceleration.
Dash cam in a car. They can charge the cap and in the event in a malfunction / event. The camera can continue to record.
Solar lamps. Charge during the day. Release energy during the night.
They’re poor at long term storage. Great at fast and temp storage.
The really short version: potential power savings.
Are you referring to the immediate oxidation of the outer layer when exposed to air?